Mlflow
mlflow_state_verification
Perform cli commands verification (state checking).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ctx |
Context
|
Typer (Click like) special internal object that holds state relevant for the script execution at every single level. |
required |
Source code in src/trecover/app/cli/mlflow.py
mlflow_start
mlflow_start(
host=Option(
var.MLFLOW_HOST,
"--host",
"-h",
help="Bind socket to this host.",
),
port=Option(
var.MLFLOW_PORT,
"--port",
"-p",
help="Bind socket to this port.",
),
concurrency=Option(
var.MLFLOW_WORKERS,
"-c",
help="The number of mlflow server workers.",
),
registry=Option(
None,
"--registry",
"-r",
help="Path to local directory to store artifacts.",
),
backend_uri=Option(
None, "--backend", help="Backend uri."
),
only_ui=Option(
False,
"--only-ui",
is_flag=True,
help="Launch only the Mlflow tracking UI",
),
attach=Option(
False,
"--attach",
"-a",
is_flag=True,
help="Attach output and error streams",
),
)
Start dashboard service.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
host |
str, default
|
The address where the server will listen for client and browser connections. Use this if you want to bind the server to a specific address. If set, the server will only be accessible from this address, and not from any aliases (like localhost). |
Option(var.MLFLOW_HOST, '--host', '-h', help='Bind socket to this host.')
|
port |
int, default
|
The port where the server will listen for browser connections. |
Option(var.MLFLOW_PORT, '--port', '-p', help='Bind socket to this port.')
|
concurrency |
int, default
|
The number of mlflow server workers. |
Option(var.MLFLOW_WORKERS, '-c', help='The number of mlflow server workers.')
|
registry |
str, default
|
URI to which to persist experiment and run data. Acceptable URIs are SQLAlchemy-compatible database connection strings (e.g. 'sqlite:///path/to/file.db') or local filesystem URIs (e.g. 'file:///absolute/path/to/directory'). By default, data will be logged to the ./mlruns directory. |
Option(None, '--registry', '-r', help='Path to local directory to store artifacts.')
|
backend_uri |
str, default
|
Local or S3 URI to store artifacts, for new experiments. Note that this flag does not impact already-created experiments. |
Option(None, '--backend', help='Backend uri.')
|
only_ui |
bool, default
|
Launch only the Mlflow tracking UI. |
Option(False, '--only-ui', is_flag=True, help='Launch only the Mlflow tracking UI')
|
attach |
bool, default
|
Attach output and error streams. |
Option(False, '--attach', '-a', is_flag=True, help='Attach output and error streams')
|
Raises:
Type | Description |
---|---|
typer.BadParameter:
|
If concurrency option is not equal to one for windows platform. |
Source code in src/trecover/app/cli/mlflow.py
mlflow_stop
Stop dashboard service.
Source code in src/trecover/app/cli/mlflow.py
mlflow_status
Display dashboard service status.
Source code in src/trecover/app/cli/mlflow.py
mlflow_attach
mlflow_attach(
live=Option(
False,
"--live",
"-l",
is_flag=True,
help="Stream only fresh log records",
)
)
Attach local output stream to a running dashboard service.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
live |
bool, Default
|
Stream only fresh log records. |
Option(False, '--live', '-l', is_flag=True, help='Stream only fresh log records')
|